BUILDING A WORLD OF DIFFERENCE

ENERGY EFFICIENCY PLANNING AND TREATMENT SYSTEMS OPTIMIZATION

1 April 2016

RAFAEL FRIAS, PE ISABEL BOTERO, PE

BLACK & VEATCH'S SUSTAINABLE WATER AND ENERGY SOLUTIONS TEAM

Founded 1915

MARKETS

Energy Telecom Water

7,000 active projects WORLDWIDE

AGENDA

- Strategic Directions US Water Industry
- Sustainable Energy Efficiency Master Planning
- Best Practices and Innovative Solutions
- Florida Utility Case Study
 - Results Highlights
 - Energy Usage
 - Energy Conservation Measures
- Questions

Market Leading Industry Research:

- SMART UTILITY
- U.S. WATER INDUSTRY
- U.S. ELECTRIC INDUSTRY
- U.S. NATURAL GAS INDUSTRY

STRATEGIC DIRECTIONS REPORT | Black & Veatch Insights Group

MOST SIGNIFICANT SUSTAINABILITY ISSUES

Maintaining or expanding asset life Customer water rates Long-term financial viability Energy efficiency Water conservation/demand management Maintaining service with declining budgets Declining consumption Reducing sanitary sewer overflows Distribution system water loss Energy recovery/generation Climate change Chemical use Cross-connections or redundancy

Q2. Which items represent the most significant sustainability issues for your utility? (Select your top three choices) [If NON-UTILITY - Which 3 items represent the most significant sustainability issues for water utilities?]

CHALLENGES TO PURSUING SUSTAINABLE WATER AND/OR ENERGY SOLUTIONS

ENERGY CONSUMPTION IN THE WATER/WASTEWATER INDUSTRY

"Nationwide, about **4 percent** of U.S. power generation is used for water supply and treatment...Electricity represents approximately **75 percent** of the cost of municipal water processing and distribution."

> **Energy Demands on Water Resources - Report to Congress on the Interdependencies of Energy and Water**

U.S. Department of Energy (DOE), December 2006

NATIONAL ASSOCIATION OF CLEAN WATER AGENCIES (NACWA) SURVEY OF ENERGY USE

89% of WWTP energy cost is Pumping or Aeration

Source: Adapted from CEE, Water-Wastewater Committee: Program Opportunities in the Municipal Sector, 2006

UTILITY ENERGY COSTS FORECAST TO INCREASE BY \$1.6B IN NEXT 5 YEARS

From GWI data, 2009

5.8% CAGR for Business as Usual Case

WHAT ARE UTILITIES DOING?

- When it comes to reducing operational costs, improving energy efficiency has been the low-hanging fruit
- Nearly 80% of utilities have replaced some level of inefficient equipment
- More than 70% are using SCADA and data analytics
- More than 60% have conducted energy audits

www.bv.com

SUSTAINABLE ENERGY EFFICIENCY MASTER PLANNING

ENERGY MASTER PLANNING PHILOSOPHY To align technical solutions and business imperatives with utility strategic objectives.

- Vision for strategic and sustainable energy management
- Roadmap for strategic planning
 - Regulatory requirements
 - Energy efficiency goals and performance indicators
 - Technologies
- Organizational capacity
- Business practices

BUILDING A WORLD OF DIFFERENCE[®]

HOLISTIC APPROACH DESIGNED TO MAXIMIZE PROJECT PORTFOLIO VALUE

CASH FLOW MODEL TO COMPARE NET PRESENT VALUE OF ALTERNATIVES

- CAPEX and OPEX estimates developed for groups of projects (portfolios)
- Cash flow forecast for each portfolio
 - Amortized annual CAPEX
 - Annual OPEX
- Energy consumption and demand profiles
 - Based on historic patterns
 - Dynamic modeling for energy conservation measures
- TBL and economic risk analysis Monte Carlo Simulation

BCE provides utility stakeholders with assurance that energy program's value and risk are appropriately balanced

BEST PRACTICES AND INNOVATIVE SOLUTIONS

APPROACH TO ENERGY EFFICIENCY EVALUATIONS

1. Understanding energy use and power rate structures:

- Data collection, interviews, site visits, field testing
- Define current energy use Develop energy baseline
- Evaluate power rate structure vs. energy needs
- **2.** Define energy optimization strategies and solutions:
 - Reduce energy consumption
 - Equipment efficiency improvements
 - Reduce energy costs
 - Minimize "on-peak" energy use and "peak demands"
 - Renewable energy generation

WELLFIELD OPTIMIZATION

- Improve well pump efficiencies and minimize valve throttling
- Optimize wellfield operations
 - Consider how time-of-use and water quality impacts the energy cost at the WTP
- Case Study Lakeland Northeast Wellfield
 - Evaluation of alternatives
 - Solution Low Cost Pump retrofit
 - 30% energy savings
 - One year payback on capital cost

PUMP STATION EFFICIENCY EVALUATIONS

PUMP STATION EFFICIENCY CALCULATOR TOOL

• Real time, wire-to-water efficiency calculation

EFF	SETPNT: 5.00 CTRL MODE: FLOW	INFLOW: EFFLOW: PID: AUTO	FLOW 5.12 4.96	
	85.00	EFF.PSI:	90.77	
	PLANT EFFICIENCY	65.02 %	-	
PMP1 PMP2 PMP3	A/M AUTO AUTO AUTO	ALM NORMAL NORMAL NORMAL	SPEED 0.00 0.02 72.11	

FINDING THE BEST AUTOMATION SOLUTION FOR YOUR SYSTEM

Empower operators to achieve optimization goals.

FLORIDA UTILITY CASE STUDY

ENERGY EFFICIENCY MASTER PLAN HIGHLIGHTS

FLORIDA UTILITY

- 18 Energy Conservation Measures (ECMs) recommended (>60 total evaluated)
- Annual O&M savings = \$250 k
 - 7% in annual savings
- Annual energy cost savings= \$500 k
 - 14% in annual energy savings
- Estimated capital cost = \$10 m
- 8 yr. NPV of \$3.5 m

UTILITY ENERGY USAGE BREAKDOWN

WATER SUPPLY, TREATMENT AND DISTRIBUTION

WATER SUPPLY, TREATMENT AND DISTRIBUTION

No.	ECM Description	Energy Reduction After ECM (KWh)/yr	Overall Percent Reduction (%)	Highlights
1	Operate Well System No. 1 pumps at BEP	201,500	0.40	Power cost higher at the wells. Operate at higher flow, more efficient.
2	Operate Well System No. 2 pumps at BEP & add variable frequency drives to membrane feed pumps	1,095,000	2.20	Power cost higher at the wells. Operate at higher flow, more efficient.
3	Modify membrane system feed pumps to operate near BEP	61,300	0.12	Bearings, rings, seals, add 4 th stage, add VFDs
4	WTP Solar PV – Roof mounted	82,700	0.17	FPL incentives
5	High Service Pump Station rehabilitation	549,312	1.10	Replace/refurbish existing pumps, add VFDs, automation

WATER SUPPLY, TREATMENT AND DISTRIBUTION

No.	ECM Description	Energy Reduction After ECM (KWh)/yr	Overall Percent Reduction (%)	Highlights
6	Building Systems / Lighting ECMs	226,600	0.45	Thermostats, infiltration, insulation, occupancy sensors
7	 bvECO[®] for WTP – Operations optimization Membranes, On-site Hypo generation, filter back-wash operations – off-peak hours High service pumps operations – use storage 	900,000	1.80	Off-peak energy use, filling storage tanks
8	RO membrane element type replacement	129,400	0.26	More permeable membrane – water blend

WASTEWATER TREATMENT AND RECLAIMED WATER DISTRIBUTION

WASTEWATER TREATMENT AND RECLAIMED WATER DISTRIBUTION

No.	ECM Description	Energy Reduction After ECM (KWh)/yr	Overall Percent Reduction (%)	Highlights
1	Upgrade mixers with DO control	1,997,300	4.00	New mixers, VFDs, DO probes
2	Add VFDs / replacement of reuse pumps	744,700	1.49	VFDs, new pumps
3	 bvECO[®] for WWTP – Operations optimization Efficiency monitoring for pump stations Optimization of chemical dosing (polymer) 	113,900	0.23	Best pump combination, optimal polymer use
4	Replace continuous filter backwash system	60,532	0.12	EcoWash – reject to 1.5% from 4%
5	Deep injection well acidization cleaning and VFD	1,146,810	2.30	Reduce pressure requirements
6	Building Systems / Lighting ECMs	429,411	0.86	Thermostats, infiltration, insulation, occupancy sensors

RESULTS-DRIVEN DECISION MAKING

Each ECM's NPV of cash flows compared to analyze long-term decisions

ENERGY EFFICIENCY MASTER PLAN HIGHLIGHTS

FLORIDA UTILITY

- 18 Energy Conservation Measures (ECMs) recommended (>60 total evaluated)
- Annual O&M savings = \$250 k
 - 7% in annual savings
- Annual energy cost savings= \$500 k
 - 14% in annual energy savings
- Estimated capital cost = \$10 m
- 8 yr. NPV of \$3.5 m

BLACK & VEATCH'S SUSTAINABLE WATER AND ENERGY SOLUTIONS TEAM:

Rafael E. Frias III, PE

Client Director

FriasRE@bv.com

(954) 465-6872

Isabel C. Botero, PE

Project Manager

Boterol@bv.com

(954) 319-9861

Does your utility needs an Energy Efficiency Master Plan?

Building a world of difference.

Together

www.bv.com

