

Chloramination Optimization Presentation

A review of chloramination theory and practices with the focus on optimizing distribution system reliability while minimizing tastes and odors, DBPs, and other complications associated with its use

November 14, 2016

Course Number: 05105131

(Course Approved By FS-AWWA for 1 PDH / 0.1 CEH)

Engineers...Working Wonders With Water®

Presented by:

Vincent Hart, P.E. | Chris Reinbold, P.E.

Agenda

- 1. What is chloramine?
- 2. Who uses chloramines?
- 3. Advantages and disadvantages of chloramines
- 4. Current DBPs
- 5. DBP formation
- 6. Controlling DBP formation
- 7. Future DBPs
- 8. Nitrification
- 9. Other effects
- 10. Free Chlorine burn conversion

What is Chloramine?

What is Chloramine?

Mono Chloramine (NH₂CI)

- Chloramines are used to provide 'residual' disinfection in water distribution pipelines
- Chloramines produce significantly less DBPs than chlorine on its own

Chloramine Chemistry is complicated

Table 7-1 - Monochloramine autodecomposition model
--

No.	Reaction	Rate or Equil- ibrium Constant	Reference
1	$\rm HOCl + NH_3 \rightarrow NH_2Cl + H_2O$	$4.2 \ge 10^6 M^{-1} s^{-1}$	Jafvert and Valentine (1992)
2	$\rm NH_2Cl + H_2O \rightarrow \rm NH_3 + HOCl$	2.1 x 10 ⁻⁵ s ⁻¹	Morris and Isaac (1981)
3	$\rm NH_2Cl + \rm HOCl \rightarrow \rm NHCl_2 + \rm H_2O$	$2.8 \ge 10^2 \text{M}^{-1} \text{s}^{-1}$	Margerum et al. (1978)
4	$NHCl_2 + H_2O \rightarrow HOCl + NH_2Cl$	6.4 x 10 ⁻⁷ s ⁻¹	Margerum et al. (1978)
5	$NH_2Cl + NH_2Cl \rightarrow NHCl_2 + \ NH_3$	pH dependent [*]	Vikesland et al. (2001)
6	$\rm NHCl_2 + \rm NH_3 \rightarrow \rm NH_2Cl + \rm NH_2Cl$	$6.1 \ge 10^4 \text{ M}^{-2} \text{s}^{-1}$	Hand and Margerum (1983)
7	$NH_2Cl + NHCl_2 \rightarrow N_2 + 3H + 3Cl^-$	$1.5 \ge 10^{-2} \text{ M}^{-1} \text{s}^{-1}$	Leao (1981)
8	$\rm NHCl_2 + H_2O \rightarrow \rm NOH + 2HCl$	$1.1 \ge 10^2 \text{ M}^{-1} \text{s}^{-1}$	Jafvert and Valentine (1987)
9	$NOH + NHCl_2 \rightarrow N_2 + HOCl + HCl$	$2.8 \ge 10^4 \text{ M}^{-1} \text{s}^{-1}$	Leao (1981)
10	$NOH + NH_2Cl \rightarrow N_2 + H_2O + HCl$	$8.3 \ge 10^3 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Leao (1981)
11	$HOC1 \leftrightarrow H^+ + OC1^-$	$pK_a = 7.54$	Bodner and Pardue (1995)
12	${\rm NH_4}^+ \leftrightarrow {\rm NH_3} + {\rm H}^+$	$pK_a = 9.24$	Bodner and Pardue (1995)
13	$H_2CO_3 \leftrightarrow HCO_3^- + H^+$	$pK_a = 6.35$	Bodner and Pardue (1995)
14	$\text{HCO}_3^- \leftrightarrow \text{CO}_3^{2-} + \text{H}^+$	$pK_a = 10.33$	Bodner and Pardue (1995)
	and the second		0.1

 $k_5 = kH^{+}[H^{+}] + kH_2CO_3[H_2CO_3] + kHCO_3^{-}[HCO_3^{-}]$ where $kH_2CO_3 = 11 M^{-2}s^{-1}$, $kHCO_3^{-} = 0.22 M^{-2}h^{-1}$, $kH^{+} = 6944 M^{-2}s^{-1}$

NOH is the unidentified monochloramine auto-decomposition intermediate

Table 7-2 - Important bromide - monochloramine reactions in drinking water treatment

No.	Reaction	Rate or Equil- ibrium Constant	Reference	
15	$\mathrm{HOCl} + \mathrm{Br}^{\text{-}} \rightarrow \mathrm{HOBr} + \mathrm{Cl}^{\text{-}}$	$1.55 \ge 10^3 \text{ M}^{-1} \text{s}^{-1}$	Kumar and Margerum (1987)	
16	$HOBr + NH_3 \rightarrow NH_2Br + H_2O$	$7.5 \ge 10^7 M^{-1} s^{-1}$	Wajon and Morris (1980)	
17	$\mathrm{OBr}^{-} + \mathrm{NH}_3 \longrightarrow \mathrm{NH}_2\mathrm{Br} + \mathrm{OH}^{-}$	$7.6 \ge 10^4 \text{ M}^{-1} \text{s}^{-1}$	Wajon and Morris (1980)	
18	$NH_2Br + H_20 \rightarrow HOBr + NH_3$	$1.5 \ge 10^{-3} \text{ s}^{-1}$	Haag and Lietzke (1980)	
19	$NH_2Br + NH_2Br \rightarrow NHBr_2 + NH_3$	pH dependent [*]	Lei et al. (2004)	
20	$NHBr_2 + NH_3 \rightarrow NH_2Br + NH_2Br$	pH dependent^	Lei et al. (2004)	
21	$NH_2Br + NHBr_2 \rightarrow N_2 + 3H^+ 3Br^-$	pH dependent ⁺	Lei et al. (2004)	
22	$NHBr_2 + NHBr_2 + H_2O \rightarrow N_2$	8.9 M ⁻¹ s ⁻¹	Lei et al. (2004)	
	$+$ HOBr $+$ 3H $^{+}$ $+$ 3Br $^{-}$			
23	$HOBr + NH_2Cl \rightarrow NHBrCl + H_2O$	2.86 x 10 ⁵ M ⁻¹ s ⁻¹	Gazda and Margerum (1994)	
24	$OBr^{-} + NH_2Cl \rightarrow NHBrCl + OH^{-}$	$2.2 \ge 10^4 \text{ M}^{-1} \text{s}^{-1}$	Gazda and Margerum (1994)	
25	$NH_2Cl + NH_2Cl + Br^- \rightarrow NHBrCl + Cl^- + NH_3$	pH dependent [#]	Trofe et al. (1980); This work	
26	$\label{eq:NHBrCl} \begin{split} & \text{NHBrCl} + \text{NHBrCl} + \text{H}_2\text{O} \rightarrow \text{N}_2 \\ & + \text{HOBr} + \text{HBr} + 2\text{HCl} \end{split}$	$17 \text{ M}^{-1} \text{s}^{-1}$	Valentine 1983; This work	
27	$HOBr \leftrightarrow OBr^- + H^+$	$pK_a = 8.8$	Haag and Hoigne (1983)	
${}^{*}k_{19} = 0.5 \text{ M}^{-1}\text{s}^{-1} + 5 \text{ x } 10^{8} \text{ M}^{-2}\text{s}^{-1} [\text{H}^{+}] + 290 \text{ M}^{-2}\text{s}^{-1} [\text{NH}_{4}^{+}] + 540 \text{ M}^{-2}\text{s}^{-1} [\text{HCO}_{3}^{-1}]$				
$k_{20} = 1 \text{ M}^{-1}\text{s}^{-1} + 1 \text{ x } 10^9 \text{ M}^{-2}\text{s}^{-1} [\text{H}^+] + 190 \text{ M}^{-2}\text{s}^{-1} [\text{NH}_4^+] + 180 \text{ M}^{-2}\text{s}^{-1} [\text{HCO}_3^-]$				
$k_{21} = 6.2 \text{ M}^{-1} \text{s}^{-1} + 8.3 \text{ x} 10^4 \text{ M}^{-2} \text{s}^{-1} [\text{OH}^{-}] + 3.2 \text{ x} 10^3 \text{ M}^{-2} \text{s}^{-1} [\text{CO}_3^{-2}]$				
${}^{\#}k_{25} = 8.3 \text{ x } 10^5 \text{ M}^2 \text{s}^{-1} [\text{NH}_2 \text{Cl}] [\text{Br}^-] [\text{H}^+]$				

Breakpoint Chlorination

Cal

The Chlorine/Nitrogen ratio effects chloramine speciation

Source: Snoeyink and Jenkine 1980

Figure 3.4 Rate of monochloramine formation as a function of pH.

pH 8.3 to 8.4 is commonly sused as the optimum target for monochloramine formation at a $Cl_2:NH_4$ -N mass ratio of 3:1 – 5:1

Chloramination is an All or Nothing Proposition

Free Chlorinated Water

Chloraminated Water

Breakpoint

Loss of disinfectant residual

Who Uses Chloramines ?

Who Uses Chloramine?

- Metropolitan Water District of Southern California - 1941
- 2. Denver 1914
- 3. St Louis 1934
- 4. Boston 1944
- 5. 29% of US Utilities (2007)

Advantages and Disadvantages of Chloramines

Advantages and Disadvantages of Chloramines

Advantages	Disadvantages
Controls DBP production (reductions of 40-80%)	Residual ammonia can lead to nitrification
Reduces taste and odor complaints	Possible increased elastomer degradation
Disinfectant residual persistence in distant parts of the distribution system	Health effects with sensitive customers
An established practice	Industrial process impacts
Ability to penetrate biofilms	Possible need for multiple injection points
	Produces known and unknown DBPs with unknown toxicity

Current DBPs

Regulatory Status

<u>TTHM</u>

Chloroform (TCM) Bromodichloromethane (BDCM) Dibromochloromethane (DBCM) Bromoform (TBM)

HAA9 Regulated (HAA₅):

Monochloroacetic acid (MCAA) Dichloroacetic acid (DCAA) Trichloroacetic acid (TCAA) Monobromoacetic acid (MBAA) Dibromoacetic acid (DBAA)

Unregulated:

Bromochloroacetic acid (BCAA) Tribromoacetic acid (TBAA) Bromodichloroacetic acid (BDCAA) Dibromochloroacetic acid (DBCAA)

TTHM MCL = $80 \mu g/L$

 $HAA_5 MCL = 60 \mu g/L$

But, > 600 DBPs Have Been Indentified

Disinfection By-Products Associated with Chloramines

DBPs

Nitrosamines (e.g., NDMA)

Iodoacids

Hydrazine

Nitrosamine Occurence Data

	UCMR2 Data		
Nitrosamine	Percent of Samples above the MRL (n = 13,280)	Percent of Systems with Samples above the MRL (n = 1,071)	
NDMA	9.3%	24.6%	
NDEA	0.2%	1.8%	
NPYR	0.3%	1.6 %	
NDBA	0.1%	0.5%	
NMEA	0.0%	0.3%	
NDPA	0.0%	0.0%	

Source: Seidel et al., EPA Stakeholders Meeting, 9/21/10

Range of Values for Nitrosamine

Source: Seidel et al., EPA Stakeholders Meeting, 9/21/10

Nitrosamines Occur in Chloraminated Systems (UCMR2 Data)

Nitrosamines Occurrence Rate, Organized by Disinfectant

Occurrence is Not Evenly Distributed

Pre-oxidation Effectively Destroys Watershed Derived Precursors

- Ozone > Chlorine > MPUV > LPUV > permanganate
 - Ozone low CT
 - Chlorine pH 8-9
 - Ozone/MPUV higher pHs
- PAC/GAC
 - Removed watershed-derived precursors

Certain Polymers Can Contribute to NDMA Formation

polyDADMAC

Polyamine

- Polyamine-derived precursors also destroyed by oxidation
 - Low doses of polymers (< 0.8 mg/L) do not have significant impacts
 - PAC/GAC works on polyamine but not polyDADMAC

Iodinated Disinfection By-Products

- Iodine containing water are disinfected with chlorine or chloramines
 - Favored when ozone or chlorine is used as a preoxidant
 - Influenced by saltwater intrusion

Hydrazine

- Cancer risk (10⁻⁶) at 10 ng/L
- Reaction of chloramine with ammonia
- Low when free ammonia is < 0.2 mg/L

Computer model

- pH< 9.9 and free ammonia<0.2 mg/L concentrations would be below 10 ng/L
- pH=11 and free ammonia of 0.5 to 0.7 mg/L hydrazine concentrations ~ 100 ng/L

Lead and Copper Release

Source: Yanjiao Xie. 2010. Dissertation: Dissolution, Formation, and Transformation of the Lead Corrosion Product PbO₂: Rates and Mechanisms of Reactions that Control Lead Release in Drinking Water Distribution Systems. Washington University, St. Louis. <u>http://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1386&context=etd</u>

Passivation is Critical to Reducing Lead Levels

• Films

- Calcium carbonate
- Metal oxide
- Metal carbonate
- Phosphate/metal/carbonate

Many Factors Can Contribute to Metal Release

- Temperature
- pH/alkalinity
- ORP
- Disinfectant
- Dissolved oxygen
- Orthophosphate
- Polyphosphate
- Chloride
- Sulfate
- Pipe material
- Iron/Manganese
- Calcium

- Aluminum
- NOM
- Ammonia
- Hydrogen sulfide
- Silica

FIGURE 13 Historical plant data for the CSMR in Greenville, N.C., finished water

Edwards, 2007

DBP Formation

Problem Description

 $Cl_2 + NOM \rightarrow Halogenated Organics$

Factors for Disinfection / Disinfection By-Products

Water Quality

Disinfectant type and concentration

Bromide ion concentration

рΗ

Biomass (bulk water)

Water age

Natural organic matter

Temperature (kinetics)

Water treatment practices

Infrastructure

Biomass (biofilm)

Corrosion

Pipe material and diameter

Disinfection/ Disinfection By-products

Microbiologic

DBPs Typically Increase With Increasing TOC

TTHMs Increase with Water Age

Formation and Decay of Disinfection By-Products in the Distribution System, Water Research Foundation Final Report, 2006.

31

Effect of Chlorine Dose

TTHM Formation

Effect of pH

TTHM Formation

Controlling DBP Formation

Several Options are Available for Controlling DBPs

- DBP and DBP Precursor Removal Technologies
- Disinfection Alternatives

DBP and DBP Precursor Removal Technologies

Alternative	Advantages	Disadvantages
Enhanced Coagulation	Low capital costWell understood technology	Ineffective on some waterIncreases sludge production
Granular and Powdered Activated Carbon	 Well-understood technology May remove VOCs/SOCs 	 Typically requires high EBCT (> 10 min.) May require high change-out frequency (< 40 days) Short contact times with PAC
O ₃ /Biofiltration	 No media change-out required Minimizes TOC in DS 	 O₃ may be expensive Biofilm needs to be managed
Ion Exchange	 Can target multiple DBP precursors Low EBCT (< 5 min.) 	 Produces a waste brine NDMA formation must be evaluated
Reverse Osmosis Nanofiltration	Can target multiple DBP precursors and other contaminants	 Produces a waste brine Very expensive
Air Stripping	Can remove THMs in DS	 Limited to THMs and other volatile compounds
Disinfection Alternatives

Alternative	Advantages	Disadvantages
Chlorine Dioxide (Primary only)	 Does not form THMs or HAAs Requires low CT values Can achieve <i>Cryptosporidium</i> inactivation 	 Expensive Possible odor issue is residual is not controlled Forms chlorite, requiring additional monitoring
Ozone (Primary only)	 May remove VOCs/SOCs Can achieve <i>Cryptosporidium</i> inactivation 	 Provides no residual in distribution system (DS) May form bromate Expensive
UV (Primary only)	Can achieve <i>Cryptosporidium</i> inactivation	Provides no residual in DS
Chloramines (Primary and Secondary)	 Can maintain stable residual in large DS Minimizes THM and HAA formation 	 Nitrification Possible NDMA formation

Future DBPs

And > 50% are still unknown

Figure adapted from Richardson et al., 2003

Several of emerging DBPs are on the EPA Contaminant Candidate List (CCL3)

- 1. 6 Nitrosamines (e.g., NDMA)
- 2. Formaldehyde
- 3. Bromochloromethane
- 4. Chlorate

Several of emerging DBPs are on the EPA Contaminant Candidate List (CCL3)

- 6 Nitrosamines (e.g., NDMA)
- Formaldehyde
- Bromochloromethane
- Chlorate

The 6 Nitrosamines are presently being screened as part of the Unregulated Contaminant Monitoring Rule (UCMR2)

NDMA

1. Chlorination

- a. Cationic coagulation polymers and coagulant aids (i.e., poly-DADMAC and epi-DMA)
- 2. Chloramination
 - a. Formation is increased near breakpoint
 - b. Preoxidation with chlorine or ozone may decrease formation
- 3. California Action Level = 10 ng/L

Nitrification

Occurrence of Nitrification

- Nitrification may be occurring in 63% of utilities that use chloramines nationwide (1995)¹
- 48% of utilities surveyed nationwide experienced nitrification (2004)²
 - a. 25% are responding to nitrification ≥2 times per summer
- TCEQ found approximately 150 systems with potential nitrification issues, based on limited water quality results (2005)

Kirmeyer et al., AwwaRF Report, 1995; Wilczak et al., Journal AWWA, 88:7:74, 1996 Kirmeyer et al., AwwaRF 2004

Why is Nitrification a Problem?

Issue	Potential Consequence
Decrease in disinfectant residuals	 Public Health Issues Compliance with Total Coliform Rule
High Heterotrophic Plate Counts (HPCs) with occasional coliform occurrences (<i>E. coli</i>)	 Public Health Issues Compliance with Total Coliform Rule (Boil orders) Loss of Consumer Confidence
May enhance corrosion of distribution piping	Pipeline IntegrityReplacement Cost

Problems Caused by Nitrification Residual Degrades NH₃ is Released $NH_3 \rightarrow NO_2 (AOB)$ NO₂ Rapidly Degrades NH₂Cl **HPC Counts Climb** Other Bacteria (Coliforms) Develop

Cause of Nitrification

rolloTemplateWaterWave.pptx

Favorable Conditions for Nitrification

Water Quality		
1	Available Ammonia	
Ţ	Monochloramine	
Ţ	Chlorine-to- Nitrogen Ratio	
Ţ	рН	
Î	Temperature	
Î	ТОС	

Distribution Sys. O&M		
Î	Water Age	
Î	Accum. of biofilms and sediments	
Î	Pipe Corrosion	

Example Progression of a Nitrification Episode

Nitrification Responses: Many Options

Action	Prevention	Correction
Adjust water quality	X	X
Flushing	Unidirectional	Conventional
Booster chlor(am)ination	X	
Free and breakpoint chlorination	X	X
Super-chlorination		X
Chlorite addition	X	
Cycling of storage facilities	X	Deep-cycling
Tank draining and disinfection		X

Nitrification Responses: Adjust Water Quality

Parameter	Desirable
Free ammonia	<0.05-0.10 mg/L N
Total chlorine residual	2.0–3.0 mg/L at POEs >1.5 mg/L in the DS
Cl ₂ : NH ₃ -N ratio	4.5:1 – 5:1
рН	> 8.3 - 8.5
Limit NOM	System specific

Chloramine decay can release ammonia

Adapted from Duirk et al., 2005

Higher Temperatures Increase Chloramine Decay

Other Effects

Things that Chloramines Does not Affect

Cleaning

- Laundry
- Dishes
- Etc.

What Does Chloraminated Water Taste Like?

- Chloramines typically do not impact any taste
- 2. In some cases, taste and smell of the water actually improves

Will Chloraminated Affect Household Plumbing?

- Washers and gaskets may tend to leak
 - a. Toilets
 - b. Faucets
 - c. Water heaters
- 2. But, changes will be gradual if at all
- 3. Piping and other metallic parts should be fine

What Are the Concerns for Kidney Dialysis Patients?

- 1. Chloramines (like chlorine) must be removed
- 2. Proper chemical addition and/or filtration is needed
- 3. Utilities would have to work with all hospitals and medical centers

Why Do Fish Owners Need to be Concerned?

- 1. Chloramines, like chlorine, is toxic to fish
 - a. As they breathe the water
- 2. Chloramines are much more stable than chlorine
 - a. It lasts in the water a lot longer than chlorine does
 - b. Will not be removed by sunlight

Evaluating the Compatibility of Chemical Disinfectants with Plastic Pipe Materials Used for Potable Water **Distribution**

- Desktop study to evaluate the 1. effects of disinfectants on PE and PVC pipe
- 2. Stage 3 failure of PE may be caused by disinfectants: $CIO_2 >$ $Cl_2 > CIA$
- 3. The presence of disinfectants may increase the strength of the PVC inner wall
- ASTM and AWWA standards provide no guidance to account for the use of disinfectants on plastic pipe
- Caution is recommended in using 5. plastic pipe in the design of water distribution systems

Source: ASTM F 2263

Three General Failure Modes of Pipe

Chloramine-Related Challenges Can Be Overcome

Area	Challenge	Solution
Water Quality	Nitrification/bacterial growth High water age Ammonia release Bromochloramine	Unidirect. flushing prog. and reservoir cleaning Control water age Monitor water quality Nitrification action plan
Infrastructure	Material degradation: • Reacts with older (20 yrs.) or low quality elastomers	Identify increases in unaccounted-for water Replace failed components with chlora. resistant ones
Consumers	 Health impacts: Kidney dialysis patients Fish and amphibians Negative impact to ultrapure water users 	Identify key affected groups Public education Internal education

Free Chlorine Burn Conversion

Steps for Transitioning from Chloramine to Free Chlorine (and Back)

- Concerns
 - Mixing of chlorinated and chloraminated water loss of residual

Loss of Residual

Occurs when

CarolloTemplateWaterWave.pptx

- Chlorine doses are high
- Large amounts of chlorinated water are mixed with small amount of chloraminated water

Solution

- Move water (either free chlorine or chloraminated water) out of the system first
 - Minimize mixing
 - Reduces the amount of time that low residual occurs

Steps

- chloramines

- free chlorine

66

Minimize Storage Volume

Probably need one reservoir ½ or more full (Fire flow/emergency)

- chloramines

- free chlorine

Start Flushing hydrants (3 or 4 locations)

Steps

Monitoring residual

- chloramines

- free chlorine

Sample tanks and plant

- chloramines

- free chlorine

Refill Low Tanks ASAP

chloramines
free chlorine

Drain Original Tank ASAP

Once empty stop flushing (check limits of the system)

Conversion Back (reverse)

- chloramines

- free chlorine

Minimize Storage Volume

Probably need one reservoir ½ or more full (Fire flow/emergency)

Questions

Presented by:

Vincent Hart, P.E. | Chris Reinbold, P.E.

Phone: (303) 404-6324 (561) 868-6407

Email: <u>Vhart@carollo.com</u> <u>Creinbold@carollo.com</u>